Approach to Hypernatremia in Dogs and Cats

Hypernatremia is defined as a serum sodium level above the reference range. It is a relatively infrequently encountered electrolyte disturbance in dogs and cats. In one retrospective study (Ueda et al. 2015), 5.7% dogs and 8.0% cats were diagnosed with hypernatremia. It was associated with increased case fatality rates in this population of patients. Understanding hypernatremia requires a comprehension of body fluid compartments, as well as concepts of the preservation of normal body water balance. The animal body maintains a normal osmolality between 280 and 310 mOsm/kg via Arginine Vasopressin (AVP), thirst, and the renal response to AVP; dysfunction of all three of these factors can cause hypernatremia (Mushin et al. 2016). In this post, I present a step-by-step approach to the hypernatremia in canine and feline patients. Further reading is recommended to deepen understanding of the physiology and pathophysiology of sodium and water balance.

Continue reading “Approach to Hypernatremia in Dogs and Cats”

Trauma, acute kidney injury and mannitol

Traumatic injury is a risk factor for acute kidney injury (AKI). The cause of AKI is likely multifactorial and may include renal hypoperfusion and renal hypoxia secondary to hypovolemic shock and/or increased abdominal pressure, rhabdomyolysis and direct nephrotoxic effects of therapy including general anesthesia (Harris et al., 2017). The osmotic diuretic, mannitol, has been used both in the prevention, and the treatment of AKI. It has been used peri-operatively to prevent the development of AKI and in the management of AKI secondary to traumatic rhabdomyolysis (Sharman et al., 2013; Yang et al., 2014). However, mannitol itself has nephrotoxic potential and therefore the benefits of its use should be considered in light of its potential to cause adverse effects (Perez-Perez et al., 2002;  Fang et al., 2010)

Continue reading “Trauma, acute kidney injury and mannitol”

Approach to Hypokalemia: Diagnosis and Treatment

All causes of hypokalemia can be divided into 3 big groups:

  • Decreased intake (unlikely to be a sole cause)
  • Intracellular shift
  • External loss (GI or renal)

A step-by-step approach to diagnosis of hypokalemia

Step 1: Review current medication history. Drugs that can promote hypokalemia (via intracellular shifting or increased losses/decreased intake):

  • K-deficient fluids
  • loop/thiazide diuretics
  • insulin, dextrose
  • albuterol, terbutaline and other beta agonists
  • catecholamines
Continue reading “Approach to Hypokalemia: Diagnosis and Treatment”

A Tricky Enterococcus

Enterococci are commensal bacteria inhabiting GI tract of animals and humans. It typically emerges in debilitated patients exposed to broad-spectrum antibiotics and as part of polymicrobial infections (especially, GI and/or urogenital). Enterococci are usually part of mixed aerobic and anaerobic flora, and antimicrobial regimens with minimal in vitro anti-enterococcal activity are often effective in treating mixed infections; therefore, the pathogenicity of enterococci in this setting is questionable. These and other factors limit the ability of investigators to determine the independent contribution of enterococcal infections to mortality and morbidity.

Continue reading “A Tricky Enterococcus”